المركز السابع: جذر 2 عدد غيرنسبى

نتعرف اليوم على النظرية اللتى احتلت المركز السابع و اللتى تقول بكل بساطة ان جذر 2 هو عدد غير نسبي. وقد برهن هذه النظرية الرياضى الشهير اقليدس اللذي عاش في الفترة ما بين 360 الى 280 قبل الميلاد في عهد الدولة البطلمية في مدينة الاسكندرية المصرية.

دعونا نتعرف اولا على ماهي الاعداد الغير نسبية. في البداية احب ان اشير الى اعجابى الشديد بالترجمة العربية لهذه الكلمة. فالكلمة باللغة الانجليزية هي irrational numbers والترجمة الحرفية لهذه الكلمة هي الاعداد البلهاء او الغبية!! لكن المعرب هنا لم يلتزم بحرفية اللفظ ولكنه اهتم بالمعنى والمقصد من وراء هذه الاعداد ولم يهتم بسبها وقذفها. ولكن ما هي هذه الاعداد؟ ولماذا وصفت بانها بلهاء؟ ولماذا هذا الذم والقدح فيها؟

عرف الانسان اول ماعرف مجموعة الاعداد الطبيعية وهي تشمل الاعداد: 1 2 3 …. الى اخره. وهذه الاعداد عرفها الانسان البدائي. و الاثار الموجودة منذ العصر الحجرى تدل على ان الانسان عرف هذه الاعداد واستخدمها ربما لعد الدجاج او قطعان الشاة او لاي سبب اخر. وهذه المجموعة لا تشتمل على العدد صفر لان الصفر تم اكتشافه متأخرا. ولكن بعض الرياضيين المعاصرين يضمون الصفر الى هذه المجموعة باعتبار انه يتناسب وظيفيا مع هذه المجموعة بينما البعض الاخر يرفض هذا الضم و يتعلل بالاسباب التاريخية وانها لم تكون معروفة منذ البداية. و الخلاف بين هذين الفريقين من الرياضيين عميق و النزاع بينهما اشبه بالحروب العقائدية فكل فريق متمسك بفكرته ويرفض الفكرة الاخرى رفضا قاطعا. وانا من وجهة نظري الشخصية المتواضعة واللتى لا تعنى شيئا اميل الى ضم الصفر الى مجموعة الاعداد الطبيعية.

نتخطى الان عصر الانسان البدائى ونأتى لعصر الاغريق. نجد ان الاغريق تعاملوا مع الاعداد بمنطق يختلف عن تعاملنا معها اليوم. فالاغريق قاموا بتوأمة الاعداد مع الهندسة. وكانت الاعداد تعنى بالنسبة لهم اشكال هندسية كما ان العمليات الرياضية كانت عمليات هندسية صرفة. فاذا تحدث الاغريقي عن العدد 3 فانه يتخيل خطا طوله 3 متر. واذا تحدث عن العدد 5 فانه يتخيل خطا طوله 5 متر. فاذا تحدث عن جمع 3 زائد 5 فانه يتخيل اضافة خط طوله 3 متر الى خط طوله 5 متر فيكون الناتج خط طوله 8 متر او العدد 8.

ومن هنا عرف الاغريق الاعداد النسبية. فالنسبة بين الخطين في المثال السابق هي 3/5 لان الخط الاول اذا قسناه بقضيب عياري طوله 1 متر  فان هذا القضيب سينطبق على الخط الاول 3 مرات وسينطبق على الخط الثانى 5 مرات ومن هنا تأتى النسبة 3/5 . وكان الاغريق يعتقدون انهم بامكانهم تكرار هذه العملية بالنسبة لكافة الاطوال مهما كانت. فمثلا اذا تخيلنا خطا طوله ربع متر ثم وضعنا علامة على بعد 6 سم من بداية هذا الخط فقسمت العلامة هذا الخط الى قسمين غير متساويين فان نسبة هذين القسمين بعضهما الى بعض ستكون 6/19 . لاننا باستخدام قضيب قياس عياري طوله ا سم فان هذا القضيب سينطبق على القسم الاول من الخط 6 مرات بينما سينطبق على القسم الثانى 19 مرة. وهكذا ظن الاغريق انهم بالنسبة لاي طول موجود فانهم سيستطيعون تخيل قضبان قياس عيارية قصيرة بحيث تنطبق هذه القضبان على الاطوال الموجودة عدد صحيح من المرات. ولايهم ان كان طول هذا القضيب العياري ا متر او 1 سم او ا مم او ا نانو متر او اقل من ذلك. فالمهم هو المبدأ و الاعداد الطبيعية هى الاعداد الوحيدة المنطقية في هذا الكون والاعداد النسبية هى نسبة بين هذه الاعداد الطبيعية.

وزاد اتباع مدرسة فيثاغورث عن ذلك واعتقدوا ان سر الكون يكمن في الاعداد و ان الاعداد النسبية لها معنى عميق. فهناك نسبة معينة تعبر عن الجمال في هذا الكون وهي نسبة المقطع الذهبي ونسبة اخر تعبر عن القبح وهكذا. كما ان كل قوانين الكون تعبر عنها اعداد نسبية فهناك نسبة تربط بين طول قطر اي مربع وطول ضلعه وهكذا. اذن فهذه الارقام تنظم الكون و لها مغزي وحكمة وهدف فهى اعداد حكيمة ولذلك تسمى rational و لا يمكن ان توجد اعداد خلاف ذلك والا فهي بلهاء لامعنى لها وكوننا حكيم لايسمح بوجود اعداد بلهاء فيه.

ولكن الفيثاغورثيين كانوا مخطئين فالنسبة بين طول قطر المربع وطول ضلعه هي عدد غير نسبي او عدد ابله كما كان يطلق عليه الفيثاغورثيون. بل ان المصيبة ان عدد المقطع الذهبى اللذي يعبر عن الجمال ورمز الفيتاغورثيين انفسهم هو ايضا عدد غير نسبى. وقد ادرك الفيثاغورثيون انفسهم هذه الفاجعة ولكنهم تكتموا الامر حتى يجدوا مخرجا لهذه المشكلة. لكن احد الاتباع خان الامانة وفشى السر فقرروا اعدامه جزاءا لخيانته واختلفت القصص فى طريقة اعدامه فبعض القصص تقول انه تم حمله في قارب ثم القى به في البحر و بعض الروايات الاخرى تقول انه تم اعدامه عند الشاطئ وهناك روايات اخرى تقول نهايات مختلفة.

دعونا الان نتأمل بعمق في معنى الاعداد الغير نسبية. و ماذا تعنى العلاقة بين  طول قطر مربع وطول ضلعه؟ حيث ان العلاقة هي عدد غير نسبي فان معنى هذا اننا لن نستطيع ان نجد اي قضيب قياس مهما كان قصيرا حتى لو كان اقصر من قطر ذرة الهيدروجين بحيث ينطبق هذا القضيب على قطر المربع و على الضلع عدد صحيح من المرات. او كما يقول التعبير الرياضى ان العدد الغير النسبى a لايمكن التعبير عنه في الصورة p/q حيث p , q عددان صحيحان او طبيعيان حيث ان الاغريق لم يعرفوا الاعداد السالبة.

و استطاع اقليدس ان يبرهن ان العدد جذر 2 هو عدد غير نسبى. اذن فطبقا لنظرية فيثاعورث فان وتر مثلت قائم طولا ضلعى قائمته ا متر هو عدد غير نسبى ويساوي جذر 2 رغم انف فيثاغورث نفسه. ولكن كيف توصل اقليدس لهذا البرهان؟

برهن اقليدس هذا القانون بما يعرف بانه برهان بالتناقض اي انه يفترض شئ في البداية ثم يصل في النهاية الى عكس الافتراض مما يعنى ان الافتراض خاطئ ولا يجوز.

اذن فاقليدس ابتدأ برهانه و  قال اننا يمكننا ان نعبر عن العدد جذر 2 في صورة رقم نسبى مختصر p/q حيث p و q رقمان طبييعان  ليس بينهما قاسم مشترك بخلاف العدد 1 .

اذن فالعددان p و q ليسا عددان زوجيان. لانهما لو كانا عددين زوجيين لتمكنا من اختصارهما كما اننا نختصر 6/4 الى 3/2 وهذا يتنافى مع الفرض ان العددان هما مختصران لاقصى درجات الاختصار الممكنة.

بتربيع العدد نحصل على .

[latex] p^2/q^2 = 2[/latex]

ومنها
1  ********    [latex] p^2 = 2 q^2 [/latex]

معنى ذلك ان p^2 هو عدد زوجي لاننا كما نري هو ضعف العدد q^2

نتستنتج من ذلك ان p نفسه عدد زوجى لان حاصل ضرب عدد فردي في نفسه هو عدد فردي ايضا لانه الارقام الاولية الداخلة في تركيب العدد و تربيعه لا تتغير

من هنا يمكننا ان نفترض ان :

p = 2k

حيث k  عدد طبيعى ما. بالتعويض في المعادلة 1  نحصل على

[latex] 4k^2 = 2 q^2[/latex]

ومنها

 

[latex] 2k^2 = q^2[/latex]

اذن q^2 عدد زوجي ومنها ان q هو عدد زوجي هو الاخر وهذا يخالف الفرض الابتدائى ان العددان لايملكان اى قاسم مشترك بخلاف الواحد. ومن هنا استنتج اقليدس ان جذر 2  هو عدد غير نسبى!!